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Diffusion of a substance in the region behind a spherical drop is investigated 

in a Stokes flow for large values of the P&let number. The method of match- 

ing asymptotic expansions is used to obtain the distribution of concentrationin 
the diffusive trail of the drop, and to determine the local diffusive flux towards 
the stern part of its surface. It is shown that behind the drop the concentration 
increases linearly along the symmetry axis of the flow with the distance from 

the rear stagnation point, and increases with the increasing ratio /!I of the vis- 

cosity of the drop and the surrounding fluid. The local Sherwood number at- 
tains its minimum at the rear stagnation point, and is equal to I( n-’ Cp $ 
1)1;-I]“” (I’ is the P&let number). The thickness of the diffusive boundarylay- 
er is of the order of P”‘. 

The solution of the problem of mass transfer in a drop at large P&let numbers obtained 

by the method of diffusive boundary layers, becomes unsuitable in the region of the dif- 
fusive trail including the neighborhood of the rear stagnation point [l]. Within this re- 
gion the method leads to a boundary layer of infinitely increasing thickness. Neverthe- 

less, the study of the distribution of concentration within the region constitutes an impor- 
tant stage in the analysis of the diffusive interaction between the particles or drops. It 
also makes possible the removal of the singularity from the rear stagnation point. 

A similar problem was investigated in [2- 41 for a rigid sphere. The mobility of the 
drop surface determines the disparities in the flow pattern and distribution of concentra- 

tion of the drop and the rigid sphere. 

1. Formulation of the problem, The distribution of concentration over the 
whole region outside the drop undergoing a translational motion with velocity U at small 
values of the Reynolds number is given,in the assumption that the substance is fully ab- 
sorbed at the drop surface and has constant concentration away from the drop, by theso- 
lution of the following boundary value problem: 

(1.1) 

r = 1, c = 0; r‘- 00, c=l (1.2) 

u = 2x, l3c i CQ = 0; c = 0, oc / xl == 0 

Here we use a spherical coordinate system with the origin at the center of the drop (the 
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angle G is counted from the direction of the flow at infinity,and the radial coordinate 
is referred to the drop radius a) and the axial symmetry oftlie flow is taken into account. 
The concentration at infinity is used as the unit concentration. 

We note that the last two conditions in (1.2) follow from the symmetry of theproblem. 

They play the necessary part of the supplementary conditions when the method of match- 
ing asymptotic expansions is used and the initial equation (1.1) is replaced in the cor- 

responding regions by a parabolic type equation. 
We consider the case of large P&let numbers,i. e. e < 1. The solution of theprob- 

lem (1. l), (1.2) in this case is known [ 11 everywhere outside the drop except in the re- 
gion of the diffusive trail W = (0 6 8 < e, r > 1 }. The aim of this work is to 
construct a solution for this region. 

Expansion of the unknown function c into a series in terms of the small parameter e 
does not produce a solution which would be uniformly applicable over the whole region 

W. For this reason we must partition this region into several subregions(seeFig.1) where 
numbers denote the corresponding subregions Wi (i = 1, 2, 3, 4) and d denotes there- 
gion of the diffusive boundary layer), construct an asymptotic solution in each of these 
subregions and match the asymptotics on the specified boundaries. 

Fig. 1 

2. Dirtrlbution of concentration in the region of dlffu#ive 
trail of the drop. Let us investigate the convective-boundary layer region of the 

trail W1 = {e < 0 < e ‘12, e < r - 1 < e-l} (the expression within the curly 
brackets indicates the order of the characteristic dimensions of the region in question). 
The right-hand side of (1.1) is inessential within this region, consequently the concentra- 
tion here depends on the stream function only. The specific expression for the distribu- 

tion of concentration in W1 is obtained by matching with the solution in the diffusive 

boundary layer cd obtained in [l] 

cl (2) = cd (2, 0) lodo= erf (v3/8 (p + 1) z), z = em19 

Cd(Z, 0)=erf( $L_), t(e)= z(P;*) {$:+cose- +} 

(2.1) 

In this region the transfer of the substance arriving from the diffusion boundary layer takes 
place without any change along the streamlines. 

To investigate the inner region of the trail W2 = {e (( r -1 < e-l, 6 < e} 

and the region of mixing W4 = {e-l <F, ‘II, < e} . , in which the radial transfer is in- 

essential, we write the equation of convective diffusion in the variables r, $ , taking in- 
to account the fact that the first term within the brackets in the right-hand side of (1.1) 
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can be neglected in these regions 

4% ac 
sinFar e* Q%“qy i acz i- wJ% + ctg We) $1 (2.2) 

IIere all coefficients must be expressed in terms of r and 9 and the expression for ‘II, 
given in (I. 1) is utilized. 

We shall consider the region of the rear stagnation point ws -= (0 < e, Y = r - 
1 < e}, in which the radial and tangential transfer are both important, together with 

the inner region of the trail I$‘* 
The equation and the boundary conditions for w3 written in the variables Y = (r - 

1) e-r, S =_I e-i@ are as follows: 

c3 Is.+- = Cd Lo-+ e2 J 3 

SR’(B + 1) 
YIP 

Here the equation is obtained from (1. l), while the third boundary condition represents 

the condition of matching with the solution of the diffusive boundary layer cd defined 

in (2.1). 
The equation and the boundary conditions for w2 written in the variables y, 5 = 

ee2 9 become 

(2.4) 

Here the equation is obtained from (2.2) and the second boundary condition is obtained by 
matching with the solution in the convective-boundary layer region of the trail (2.1). 
The relations (2.3) and (2.4) must be complemented by the condition of matching 

es (Y -+ co) = 2 (_?j -+ 0) (2.8 

We see from (2.3) and (2.4) that the concentration in the region W3 is of the order of 
e2, and in W2 of the order of e. Therefore in order to fulfil(2.5), we must require that 

8 iv, 5 (Yt (0) lu+o, e-const -+ 0 (2.6) 

In accordance with (2.4), (2.6) and with (2.3), (2.5), the distributions of concentration 
in the corresponding regions w2 and ws are, respectively, 

c”(y, 5) = e v”- 3’!J;t) 15-t 2Yl (2.7) 

Since the concentration within the inner region of the trail does not satisfy the bound- 
ary condition at infinity (1.2) when y -+ co ) we must consider the mixing region 
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w* = {e-l <r, 4 < e). Introducing the variables f.) = er, z = e?$, we ob- 
tain the following expressions for W* . 

Here the equation is obtained from (2.2) and the initial condition (as p --+ 0) is found 
by matching with the solutions in the regions I%‘(‘) and w(‘). The solution of the prob- 

lem (‘2.9) has the form 

c@)(z, p) = A(& p)*[erf~/,(B+1)Z-J3(~2~~) z]+ (2.10) 
J.3’$y (2 + w 

A(& @*u(z) = ~+xp{-~}I,{(z, z*pp}u(z*)dz” 
n 

Here fs (2) represents a modified Bessel function of the first kind. 

Let us quote the formulas for the distribution of concentration (in the spherical coor- 
dinate system) in the regions wi (i = 1, 2, 3, 4) of the diffusive trail of the drop * 

which follow from the expressions (2. l), (2.6). (2.7) and (2.9) 

cl = erf (e-l 1/3/8 (/3 -t_ 1) 9) (2.11) 

($3 =I 
J 

3 “2-J * ) [ 2e (r - 1) + e+$] 

K c*(r4cQ)-_,1---;” 79 
exp -m , K - const 

( ) 

Here the relation I@ = 9 (r, 0) is given by (1. l), ,&s denotes the distribution of 
concentration in the regions Wa and I%‘3 which, as (2.7) and (2.8) imply, can be writ- 

ten as a single formula, and for w” we give the asymptotic behavior of the concentra- 

tion at large distances from the drop; K denotes the total diffusive flux at the dropsur- 

face. 
Expressions for the distribution of the concentration and the local Sherwood number 

which are uniformly suitable in e (over the whole interval 0 < 8 g n, r - 1 < e), 
have the form 

c (r, e) = cd (r, e) + (r - 1) kin 

j (0) = $ If_ = id(e)!,+ jminc imtn = e @r-l (B + I)]“’ 

(2.12) 

Here cd and jd (8) are the quantities calculated according to the diffusive boundary 
layer approximation. 

We can see that the minimum value of the local Sherwood number increases with the 
increasing viscosity of the drop, and the stern part of the drop makes a contribution .to- 
wards the total diffusive flux only in the third order approximation with respect to e. 
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Behind the drop and along the axis the concentration at first increases linearly with 
the increasing distance @ from the rear stagnation point, and later tends exponentially 

to its value at infinity (2.11). For a rigid particle the initial law of growth is propor- 
tional to the square root of y 141. The solution within the inner region of the diffusive 

trail of the drop is more depleted than the corresponding region in the case of a rigic! 

particle [4], and the concentration is of the order of P-‘A (@ -f- I)“#. 
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